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Abstract

Traditional methods for Unsupervised Domain Adapta-
tion (UDA) targeting semantic segmentation exploit infor-
mation common to the source and target domains, using
both labeled source data and unlabeled target data. In this
paper, we investigate a setting where the source data is un-
available, but the classifier trained on the source data is;
hence named “model adaptation”. Such a scenario arises
when data sharing is prohibited, for instance, because of
privacy, or Intellectual Property (IP) issues.

To tackle this problem, we propose a method that re-
duces the uncertainty of predictions on the target domain
data. We accomplish this in two ways: minimizing the en-
tropy of the predicted posterior, and maximizing the noise
robustness of the feature representation. We show the ef-
ficacy of our method on the transfer of segmentation from
computer generated images to real-world driving images,
and transfer between data collected in different cities, and
surprisingly reach performance comparable with that of the
methods that have access to source data.

1. Introduction

The successes of deep learning, especially in semantic
segmentation, have been driven in large part by large ar-
chitectures [10, 9]. While architectural improvements have
made tremendous strides in improving performance, these
large computation machines require vast amounts of data to
be trained adequately. A few large densely labeled datasets
such as Cityscapes [17], or Berkeley Deep Drive [73] ex-
ist, but producing them, for instance for a new use case
due to a different environment, or sensors, is very labori-
ous and expensive; Cordts et al. [17] reports that each im-
age required about 90 minutes for labeling and verification.
Added to the difficulty of collecting data for segmentation,
minor changes in conditions like change of cities between
train and test results in a drop of performance [15], as so
does change in lighting conditions [19], as it violates the
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pivotal assumption of test and train data being sampled from
the same distribution [57]. Thus, owing to the large costs,
both time and economic, creating annotated datasets for
each scenario is impractical, motivating the re-use or trans-
fer of knowledge from available images to requisite appli-
cation.

The problem of transfer for segmentation has been pre-
dominantly investigated in literature (see Section 4) in two
settings: adapting a model trained on synthetically gener-
ated images to real images, and adapting a model to cities
different than the ones it has been trained for. We too adopt
these settings for study in this paper. The synthetic-to-real
images adaptation has attracted a lot of attention as the cost
of generating segmentation ground truth for graphically ren-
dered frames like GTA [58], or Synthia [60] is substantially
lower. Richter et al. [58] labeled a total of 24,966 frames
at an average of 7 seconds per frame, a large drop from 90
minutes taken for Cityscapes. However, due the nature of
their generation, these synthetic images have a significant
domain gap to the real images, which results in a large drop
in the performance of networks trained on synthetic data
when they are used on real images. Similarly, given the ex-
isting real world datasets like Cityscapes, it is paramount
that the knowledge learned on these datasets is effectively
transferred to different scenarios, without having to provide
annotated data for each scenario.

A large portion of the methods that has been devoted to
tackling this problem, like some of the ones reviewed in
Section 4, require the labeled source data to be available
along with the unlabeled target data for the adaptation pro-
cess. We, in this paper, focus on the problem where the
source data itself is not available but the source trained clas-
sifier is [ 16]. This is similar to life-long learning [63], where
the goal is to adapt to several tasks over several domains,
and the only information payload that is carried over is the
model itself. Differing from that, we are not concerned with
preserving the performance on the source task. The current
problem of source data-less transfer is pertinent when there
exist data sharing restrictions on the source data; a common



way to circumvent this is to share the trained classifier from
which the input data itself cannot be reconstructed. A clas-
sical application is in medical image processing, where pa-
tient data cannot be freely shared due to privacy concerns,
but a trained model can be. Another relevant application
where we envisage such a setting is in search-and-rescue
operations, where data is collected on a mobile drone, and
the segmentor network is adapted based on only the data
collected, without having the need to access the original la-
beled dataset. Thus the problem of domain adaptation in the
absence of source data, termed model adaptation [16], is of
practical significance.

In this work, we study the problem of model adaptation
for semantic segmentation. To the best of our knowledge,
ours is the first work to do so. In the absence of source
labeled data that has been effectively exploited by previ-
ous works, we enforce auxiliary properties that are desir-
able in a system, namely confident predictions for the tar-
get data, and noise resilience, and thereby increased stabil-
ity of classification to parameter choices. To this end, we
propose a method that uses feature corruption [16, 47, 54],
and entropy regularization [29, 69]. We find that having ac-
cess only to the source classifier, along with unlabeled tar-
get data, can result in performance comparable to the case
where source data is also available.

2. Handling the absence of labeled source data
2.1. A toy problem

To motivate our method, we consider the ideal case de-
picted on Figure 1. Let us consider a simple case of binary
classification of Y = {0, 1} for a scalar input feature = € R.
The probability of classification is defined using a sigmoid
function of the input x and a threshold ¢
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For illustration in Figure 1, we show the class conditional
distributions, though we do not use class information. With
only the information of the feature distribution px (x), our
goal is to reason about scenarios that are likely to generalize
better. If the labels are available, traditional wisdom tells us
that Figure Ic is likely the ideal scenario to attain in terms
of generalization [62]. We make it a little more concrete
here, in the case where the labels are not available.

In Figure la, the feature x is given by a source trained
feature extractor, and tg is the threshold learned. It is ap-
parent that such a threshold is quite likely ill-suited for the
target domain, as it places the decision boundary in a high
density region of the feature space, contradicting the tradi-
tional cluster & continuity assumptions [7, 41, 6]. However,
if we change the threshold to t,, we expect better general-
ization performance. Note that this is also the classifier for

which the entropy of output probability predictions over the
distribution px () is the lowest. We mathematically define
this idea and show numerical simulations for these cases in
Appendix B.

We would like to modify the feature extractor itself such
that the class conditional distributions overlap lesser than
in Figure la. This can be achieved by imposing an en-
tropy penalty on output posterior predictions, and using that
penalty to train the feature extractor too. We show this in
Figure 1b. As the overlap of the class-conditional data dis-
tributions decreases, we expect the generalization perfor-
mance to improve.

The ideal scenario is shown in Figure 1c, where a large
number of thresholds can separate the two classes, and we
choose one that results in the least uncertain predictions of
target data. One can draw parallels to max-margin methods
like the SVM, where one is interested in finding a separator
that is optimally distant from all classes. In a nutshell, we
see that a classifier that has stable predictions for a range
of parameter choices is likely to generalize better. This is,
of course, in our context where we do not have access to
labeled training data. In order to accomplish this, we need
to go beyond entropy quantification of the predicted labels;
we enforce stability of predictions over noisy features x L e.

2.2. Proposed method

We, first, formally define the problem. Let X € RD
be the input, and ) € {1...K} the labels. Let S with
density pg(x) be the source domain and 7 with density
ur(x) be the target one, where we do not have access to
the labels of 7 while training. Let Xg = {(x;,y;) ¢ =
1...Ng,x; ~ ps(x),y; ~ ps(y)} be the source data, and
Xr={(xi,)i=1... Ny, x; ~ pr(x)} be the target data.
Let pr(y) be the target domain label prior that is unknown
to us. Here pug # pp. We do not have direct access to
Xg, but have access to a network trained on Xg. Let us
denote that network by f(x,0s) = fs(x) where Og de-
notes the parameters of the network trained on the source
data. Let g and h denote the feature extractor and classifier
respectively, whose composition is f i.e., f = hog. Let
also 8, and 6}, be their corresponding parameters. In our
case, the network g refers to the ResNet-101 backbone, and
h refers to the ASPP [10] decoder, which we describe in
Section 3.3. For convenience, h also subsumes the softmax
layer, and thus f(x;0) = p(y|x; @), where y is a vector
of probabilities from which the predicted label is sampled.
Summarizing, we have fg and X, and our goal is to mod-
ify fs such that its performance is improved on 7 data.

2.2.1 Optimizing the feature extractor to generate ro-
bust features

The likelihood of predictions y for an input of @ € T is
computed by f(x;0), on which an entropy penalty can be
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Figure 1: Given only the feature distributions in la to lc in a two-class scenario, which one generalizes the best? In la, we
show the distribution of features extracted by source trained network and the corresponding source threshold on the target
data. Tuning the threshold to ¢, from ¢g is expected to result in better generalization. If we can modify the feature extractor
itself, reducing the uncertainty of classification over the domain gives us 1b. This can be achieved by penalizing the entropy of
predictions of each of the data points. We argue that while entropy is seemingly sufficient, we need to reduce the uncertainty
in the predictions of the network over a wide range of parameter choices obtain better separation of the data like in lc, and

thereby better generalization. Details in Section 2.1.

imposed [29]. However with a trivial application of this,
for the illustration in Figure 1b, the network can learn to
separate the distribution by placing the threshold ¢, at any
arbitrary point and shearing the feature distributions around
it, thereby being stable to the choice of the threshold instead
of attaining separation of features as in Figure 1c. For sim-
ple problems like the one in Figure 1, it can be achieved
by enforcing stability to input perturbations. However in
deep networks, the network can learn to denoise the inputs
in the initial few layers of processing. Using stronger aug-
mentations like the ones in Chen et al. [13] are ill-suited for
segmentation, as classification networks are expected to be
invariant to such noise, whereas segmentation networks are
expected to be equivariant. This can be remedied by adding
structured noise to inputs such that the layout of the input
objects is preserved (for example, modifying the colors of
objects). We achieve this by adding noise to the feature rep-
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Figure 2: An illustration of the proposed method. The main
decoder is trained with Equations (3) and (5), whereas the
backbone feature extractor is trained with a combination of
Equations (2), (3) and (5). At test time, we discard the aux-
iliary branches, and thus there is no additional computation
at inference.
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resentation using dropout, similar to Ouali et al. [54], that
acts as a structured noise in the input space.

Let ' = f(; 0;) be the output of the network using the
instantiation of dropout, and y = f(x; 0) the output for
the network without dropout. In such a case, we propose to
compute the uncertainty loss as

’ith

To implement Equation (2), we introduce dropout only
between g and h. In the context of Bayesian neural net-
works, such a method has been termed LastLayer-Dropout
elsewhere [55]. Instead of using a single branch that pre-
dicts the output with dropout-weights, we use multiple de-
coders h that takes in dropped out features predicted by g.
Thus y = f(x;0) = h(g(w;0,);01) and § = f(a:0) =
h(g(x;8,); ). Thus, each auxiliary decoder & sees only
partial feature tensor, and is required to come as close to
reconstructing the original label tensor. We, experimen-
tally, find that freezing the main decoders’ weights 8;, while
training the auxiliary decoders’ parameters 6), results in bet-
ter performance. Our full method is shown in Figure 2.

The use of multiple auxiliary decoders has been pro-
posed before in Meyerson and Miikkulainen [49] for defin-
ing pseudo-tasks for deep multi-task learning, and in Ouali
et al. [54] for semi-supervised learning. Meyerson and Mi-
ikkulainen [49], however, use ground-truth labels to train
each of the auxiliary classifiers. We note the similari-
ties to several previous works that focus on generating ro-
bust representations using various kinds of feature corrup-
tions [1 1, 28] that are class agnostic, and ones that are class
specific like guided cutout [20]. However, we experimen-
tally find that advanced forms of feature noising (like class
dependent noising or targeted cutout) do not work as well,
and we hypothesize that it is due to the unreliable predic-
tions of the source trained network on target images.



The proposed uncertainty loss in Equation (2) improves
the noise resilience of the network. In addition to that we
use an entropy regularizer that minimizes the entropy of the
network’s predictions, that results in better empirical per-
formance.

»Cent = H{f(iL’, 0)} (3)

where, H{} is the entropy of the probability distribution
over all K classes for an input . We hypothesize that this
is because the dropout noise modifies the decision bound-
ary given by the optimizer itself, and thus is beneficial to
explicitly regularize the predictions given that estimate of
weights. We find that we do not need a diversity enforcing
loss, as specified in [37, 44], to prevent degeneracies.

2.2.2 Regularizing using the source trained model

We note that the losses in Equations (2) and (3) do not use
the information in the source trained classifier, but enforce
certain properties to be satisfied by the network on the target
domain. In Figure Ic, an interchanged labeling i.e., where
class-0 is predicted class-1 and vice-versa, results in the
same loss value for Equations (2) and (3). To avoid such
issues, and to infuse plausible class structure to the data, we
use pseudo-labeling.

Pseudo-labeling or self-training has been a mainstay
method in the semi-supervised problems, prior to the deep
learning era. However, owing to the availability of large-
scale datasets, it has been used to great success [, 41, 71]
for several classification problems. Traditional methods
use the class with the highest predicted probability as the
ground-truth for each unlabeled sample. However, in the
case of a domain change, the accuracy of such predicted
pseudo-labels is low. So we use the following modification
to the standard definition

_ Jargmax f(x, )
YPL= ) IGNORE

if max(f(x,0)) > 7
: “)
otherwise

i.e., we only consider as pseudo-labels the samples that are
at least 7 confident. The samples with the /[GNORE label
do not contribute to the loss. However choosing 7 is a non-
trivial task, as too low a threshold will result in wrong la-
bels, and too high a threshold will result in no target data
being bootstrapped for training. In this work we adopt the
strategy of class balanced thresholding [81], where 7 is var-
ied per class, such that a certain proportion of points per
class are always selected. We define the pseudo labeling
loss to be the cross-entropy loss with the pseudo labels as
defined in Equation (4)

Lpr = —1y,, log(y) ©)

where 1,,,, is one-hot encoded vector of ypr, and log is
applied element-wise.

Thus, the overall loss function being optimized is the
combination of Equations (2), (3) and (5):

L= ACPL + Aent'cent + )\un‘cun (6)

where A¢pt, Ay are the weights of the individual loss terms.

Our work is connected to recent work in interesting
ways: if Equation (2) is construed to be a form of self-
supervision, our method can be interpreted as a form of
test-time training [65]. Test-time training proposes to use
an auxiliary task at test-time that helps combat domain shift
from the training set. We differ from them in that we do
not update the network at test time, but do so when given
target domain data. Similarly, our work, conceptually, uses
self-supervision for domain adaptation, similar to [64], but
doesn’t need access to source labeled data. Additionally,
our method can be interpreted as a form of making the net-
work a bit Bayesian [38], where instead of placing Gaussian
posterior on the weights of the penultimate layer’s weights,
we use dropout distribution. As previously mentioned, our
method has similarities to pseudo-tasks, in multi-task learn-
ing [49], which uses labeled data for training.

3. Experiments
3.1. A toy problem

To elucidate the utility of each of the terms in Equa-
tion (6), we use a toy problem as shown in Figure 3. In
Figure 3 a & b we show the source and target datasets; we
use a rotated version of the source data as the target data.
As it is in our case, we do not use the labels of the tar-
get data. We train a small two layer neural network with
batchnorm and ReL.U activations. We provide the exact ar-
chitecture in Table 5 in the appendix. We take the outputs
before the last classifier layer as the features of the network,
and use the techniques that we described in Section 2.2 to
train the network, except we do not use pseudo labeling for
this problem. We use a feature dimensionality of 2 and plot
the target features in Figure 3c with the source classifier. It
is very apparent that the source network extracts features
that do not transfer well. In Figure 3d, with a simple en-
tropy regularization on the target data, we see that the per-
formance improves tremendously. However, some of the
blue points are very close to the separating line. To remedy
this, our proposed feature noise decoder (detailed in Sec-
tion 2.2) pushes the points away from the separating line.
This can be interpreted as a form of increasing the stabil-
ity of the classification, and thereby reducing uncertainty,
which we hypothesize to be the key to better generalization.

3.2. Datasets and Evaluation

We demonstrate the efficacy of our method on
the standard domain adaptation tasks of GTA [58]—
Cityscapes [17] (GTA-CS) and Synthia [60]— Cityscapes
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Figure 3: A toy example in R? to illustrate our algorithm. The target data is unlabeled, however we shade it for illustration.
The thick line in all the figures is the separator. In (a) we show the source data and the classifier trained on that, and in (b) the
classifier unmodified on the target data. In (c) we visualize the features extracted by the source trained classifier on target data.
With a simple entropy penalty on the target data, we get substantially better performance (d). With the additional uncertainty
loss, we see that the features extracted are pulled further away from the separating line in (e). Details in Section 3.1.

(SYN-CS) and Cityscapes—NTHU Crosscity[ 5] (CS-CC),
a standard test setting used in several previous works (Sec-
tion 4). Cityscapes consists 2975 annotated images, each
of size 2048 x 1024, that act as our training set. It has
500 images as the validation set, which we use to bench-
mark our method. It consists of 19 semantic classes for seg-
mentation. The GTA dataset consists of 24966 frames, of
size 1914 x 1052 grabbed from the famous game Grand
Theft Auto. The ground truth is generated by the game
renderer itself. It shares the same 19 semantic classes as
Cityscapes. Synthia has 9400 images of size 1280 x 760
synthetic images, and shares 16 classes with Cityscapes.
For our method, we use a network trained on Synthia or
GTA, and adapt it to Cityscapes using the 2975 training im-
ages without their ground-truth labels. Crosscity dataset has
been recorded in four cities: Rome, Rio, Taipei, and Tokyo
with each image of resolution 2048 x 1024. Following [12],
we use their experimental setup of 3200 unlabeled images
as target training data, and 100 labeled images as target test
data. This adaptation task has 13 shared classes. We use
the pretrained models provided by Chen et al. [12] for the
source trained model.

To evaluate our method, we use Intersection-over-Union
(IoU) for each class, and its average mean-Intersection-
over-Union (mloU) over all classes. We report the metrics
for all the 19 classes of GTA-CS adaptation, for the 16 com-
mon classes for the SYN-CS experiments, and for the 13
common classes in the CS-CC experiments. In accordance
with some recent papers, we also report a mloU* compar-
ing only 13 classes for the Synthia to Cityscapes adaptation
task.

3.3. Implementation details

To facilitate a fair comparison with relevant works, we
use a DeepLab V2 network [10] with a ResNet-101 back-
bone [31]. Using the notation defined in Section 2, g is

the ResNet-101 based feature extractor, and A is the Atrous
Spatial Pyramidal Pooling (ASPP) decoder. The ResNet
101 backbone is pre-trained on ImageNet. ASPP [10] is a
multi-scale decoder, that is used to aggregate multi-scale in-
formation for segmentation. It has 4 parallel atrous convolu-
tions of various rates, which capture long-range contextual
information from extracted features. We train the model on
the source domain with stochastic gradient descent with a
learning rate of 2.5 x 10~* with a weight decay of 0.0005,
momentum of 0.9. We use a poly learning rate decay sched-
uler with power of 0.9. For the adaptation experiments, we
use a lower learning rate of 5 x 1075, with other parame-
ters staying the same, with no learning rate decay. We also
use a 10x the learning rate for ASPP decoders [10] in our
experiments. For all our experiments, we use Aepe = 1.0,
Aun = 0.1. We use the defaults prescribed by Zou et al.
[80] to extract class-balanced pseudo labels. For the CS-CC
experiments, we run the adaptation for only 2 epochs, and
for GTA-CS, SYN-CS for 6 epochs. Code will be available
athttps://git.io/JthPp.

3.4. Results

We show the performance of our proposed method on the
tasks of GTA-CS adaptation in Table 1a, SYN-CS adaptation
in Table 1b and CS-CC adaptation in Table 1c. We obtain re-
sults that are at-par or better than some of the classic works
on unsupervised domain adaptation (with source data). This
work is, however, not a claim that source data is not neces-
sary for domain adaptation. The utility of source data has
been exploited effectively by recent methods through style
transfer techniques [72, 35], thus they obtain higher perfor-
mance than us. Our proposed method improves substan-
tially on the larger background classes, and we hypothe-
size this is because the source classifier can make reliable
predictions for these classes. The perceptual domain gap
seems to influence the transfer performance too, as we get
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(c) Results of Cityscapes — Cross-City (CS-CC) experiments.

Table 1: For all the experiments in Tables la to 1c we compare our proposed method with methods that use source data for
adaptation. We find that our method is comparable, and in some cases better than the methods that use the source data for
adaptation. In underline, we compare our results to the source trained classifier, and with an bold the best performance over
all methods. We omit the underline if our proposed method, or the source classifier out performs the methods that use the
source data for adaptation.

very comparable performance for GTA-CS and CS-CC ex-
periments, compared to the results we obtain for SYN-CS

experiments.

3.4.1 Importance of loss terms

In order to correctly attribute performance to each of the
terms in Equation (6), we ablate over the loss terms in Ta-
ble 2. Broadly summarizing, we find that the first choice of



Lent +Lpr  Lun+Lpr  LpT L
Eq3+Eq5 Eq2+Eq5 Eq6 Eq6

4452 45.07

Loss function Lpr  Lent
Eq5 Eq3

% mloU 4224  19.85 42.39 42.72

Table 2: Importance of each of the loss terms proposed.
Lpr refers to training with loss in Equation (6) without
freezing the decoders, and the last column £ shows the per-
formance on freezing the main decoder. We see that each
of the loss terms gives a consistent improvement over the
previous loss values.

using pseudo-labeling results in a substantial improvement
of performance over the source classifier. With each term
we see that the performance increases, however as described
in Section 3.4.2, our method also suffers higher variance.
Thus, for a new use case one might expect a small but con-
sistent improvement with pseudo-labeling, and other loss
terms are useful if the method can be tuned carefully. We
show various additional ablations in Appendix D, and some
qualitative results in Appendix E.

3.4.2 Variance analysis

In order to obtain a better estimate of performance, we run
some of the baseline methods that we use in Table 1a with
five random seeds and show the performance. We use the
publicly available codes from the authors. The codes were
executed for a maximum of 72 hours, a limitation imposed
by our computation resources. For each method, we change
only the random seed for each run, and leave the rest of
the hyperparameters to the default values set by the authors
in their codes. In Table 3, we show various statistics com-
puted over the obtained runs. We see that the common trend
in publications on UDA is to report the best obtained per-
formance. While it is a pragmatic choice to use the best
obtained model as benchmarked on a validation set, for
deployments, it induces a systemic bias in the assessment
of the true performance of the system. Thus, we believe
that better characterization of the system’s performance is
through computing the average performance and the stan-
dard deviation, in addition to the best performance obtained.

In Table 3, we find that merely changing the random seed
can have a noticeable effect on the performance of some of
the standard systems, an observation made before [48, 3].
The discrepancy between the maximum results in Table 3
and the reported numbers can be attributed to hardware and
software discrepancies, or budget used. Vu et al. [69] also
remark that one needs to run the experiments a few times to
reach comparable performance '. Keeping in line with the
standards of the domain, we report the best obtained per-
formance in Tables la to 1c, and show results of variance

lhttps://qithub.com/valeoai/ADVENT#traininq

Method Performance Min Reproduced Previously
estimate Results Reported

AdaptSegnet [60] 39.68 +£1.49 37.70 42.20 42.40

ADVENT [69] (90K) 41.57 £0.73  40.73 42.73 43.80

ADVENT [69] (Best) 42.56 £0.64 41.60 42.39
CBST [81] 44.04 £0.88 42.80 45.03 45.90
Proposed Method 4244 +2.18 39.71 45.06 -

Table 3: Variance of the methods examined for the GTA—
Cityscapes. We show the mean, standard deviation, min-
imum and reproduced (maximum) performance obtained
over five runs with different random seeds, and the official
reported metrics from the paper. For ADVENT we show
two rows to indicate the two testing strategies in their code:
The first one is after 90K iterations, and the second is the
best attained performance. We see that the common strat-
egy is to report the best obtained result.

Rome Rio Tokyo Taipei
Performance 3 )\ 08 5237+ 1.08 492+ 071 49.48+0.76
estimate
Table 4: Variance of proposed method for the

Cityscapes—NTHU Crosscity adaptation.

analysis in Tables 3 and 4. Examining the mean and stan-
dard deviation obtained for our GTA-CS and CS-CC experi-
ments, we find that while our method achieves higher maxi-
mum performance, it has a higher variance compared to the
methods that use source data for adaptation process. We hy-
pothesize this is due to the unavailability of source data for
adaptation; the proxy tasks used cannot act as suitable re-
placements for labeled data, in controlling and guiding the
optimization process. We leave this analysis to future work.

4. Related Work

Semantic Segmentation Deep learning had its success
in semantic segmentation with fully convolutional net-
works [45], which converted the full-connected layers to
convolutional layers. Following this, various networks
that made several architectural changes to improve ac-
curacy metrics [74, 79, 10], and computational require-
ments [78, 56, 59, 53] have been proposed. To remedy
the data hungriness of these networks, domain adaptation,
specifically unsupervised domain adaptation, has been an
oft studied problem recently

Unsupervised Domain Adaptation Based on the semi-
nal work of adversarial domain adaptation [26] that uses
a discriminator network to align features from both do-
mains, several methods have been proposed for segmen-
tation on similar lines. Methods have been proposed that


https://github.com/valeoai/ADVENT#training

align intermediate feature spaces [33, 61, 22,
space [66, 67].

], output

Another family of methods use pseudo-labeling to enrich
the target domain training using either hard labels [81, 18,

], or soft labels [80]. Chang et al. [5] use a per-domain au-
toencoder to separate domain idiosyncrasies from features
relevant for cross-domain segmentation. Vu et al. [69], Chen
et al. [12] propose an entropy based objective, and an adver-
sarial alignment of the entropy maps of the two domains.

A host of techniques include style translation as a part
of their network that is trained along with the segmentation
network [32, 43, 14, 50], or separately [72, 35].

Model Adaptation Most of the previously mentioned
methods need the explicit availability of source domain data
during adaptation too, and have made tremendous strides in
improving the segmentation performance in that case. A
few recent papers tackle model adaptation for classification
problems [44, 42, 16]. [39] proposes source-free domain
adaptation in the case where label knowledge of the target
domain is not available, and show their efficiency on a set of
classification problems with varying levels of label overlap.
As we argued in Section 1, to the best of our knowledge,
this problem has not been tackled in the context of semantic
segmentation. Though the task of segmentation can be con-
strued to be one that of pixel-wise prediction, we emphasize
that the techniques cannot be interchangeably used. As the
resource requirements of segmentation networks are sub-
stantially higher than that of classification networks, meth-
ods proposed classification that use label conditioned gen-
eration [42] of target domain data, or use memory intensive
methods for reliable estimation of pseudo-labels [36, 44]
are impractical.

Self-supervision for segmentation Self-supervised
learning exploits the structure in data by defining a pretext
task, so that the network learns a good semantic repre-
sentation of the input image. Examples include rotation
prediction [27], context prediction [21], jig-saw puzzle
solving [52],contrastive learning[13, 30]. Self-supervised
learning for unsupervised domain adaptation has been
proposed to train the feature extractor [64]. However, the
applications of self-supervised learning to segmentation
have been limited, as the invariances enforced differ widely
between classification and segmentation problems. Some
attempts to learn segmentation networks include using very
strong perturbation techniques like CutMix [24], using
consistency regularization through feature noising [54],
by using clustering for pseudo-labels [40]. As described
in Section 2.2, we note similarities of our method to tasks
proposed in [54].

Multi-task learning and robust classification The use of
multiple tasks to enrich the representations learned by a net-
work has been used quite often in computer vision [77, 4].
These ideas have been adapted to single task learning by
devising pseudo-tasks [49]. These pseudo-tasks train the
shared network structure to learn the task in multiple ways,
and can be interpreted as using self-supervision. Simi-
larly, increasing the robustness of classification through fea-
ture noising has been studied extensively [28, 8, 68, 16,

]. Work on learning robust networks through pseudo-
ensembling by reducing the variance when dropout is used,
has been proposed [2]. Ideas of large margin learning have
been extended to deep learning [23].

Uncertainty modeling for neural networks Our pro-
posed method in Section 2.2 is very similar to the un-
certainty modeling for neural networks using Monte-Carlo
(MC) dropout. MC-dropout [34, 25] uses dropout at test-
time to sample various outputs and average them for pre-
dicted posterior. Bayesian treatments of neural networks
have been important owing to their ability to predict un-
certainty better, and dealing with mis-calibration prob-
lems [38]. Such modeling has been used for medical imag-
ing to estimate the confidence of lesion segmentation [51],
for autonomous driving to estimate the uncertainty of steer-
ing wheel angle prediction [46].

5. Conclusion

In this paper, we focus on the problem of domain adap-
tation for semantic segmentation in the absence of source
data. In the absence of any labels to guide the optimiza-
tion, we propose a method that reduces the uncertainty of
predictions on the target domain data, that can also be in-
terpreted as increasing the stability of the feature extractor.
On the standard benchmark of tasks for semantic segmenta-
tion transfer, we obtain performance comparable with that
of methods that use source data. We hope that our work
gives the required fillip to the community to focus on this
newer, practically significant, and challenging form of do-
main adaptation.
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